

ch Environmental, Inc.

5 South Miami Avenue lage of Cleves, OH 45002 www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

	36						REC	ALIBRATION DUE DATE:
)		Janu	ary 11, 2020
vir	onm	ent	al					
	Ce	rtifa	cate	of O	Cal	ibri	rtion	
		-	Calibration	Certificatio	on Informat	ion		
Cal. Date:	January 11	, 2019	Roots	meter S/N:	438320	Ta:	293	°K
Operator:	Jim Tisch			•		Pa:	760.7	mm Hg
Calibration	Model #	TE-5025A	Calik	arator S/N·	0005	14.	/00./	
canoration	model #.	12-3023A	Calix		0005			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔН	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4090	3.2	2.00	
	2	3	4	1	0.9980	6.4	4.00	
	3	5	6	1	0.8900	7.8	5.00	-
	4	7	8	1	0.8450	8.7	5.50	
	5	9	10	1	0.6990	12.6	8.00	
			C	Data Tabula	tion]
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	√∆Н(Та/Ра)	
	(m3)	(x-axis)	(y-axi	is)	Va	(x-axis)	(y-axis)	
	1.0138	0.7195	1.426	59	0.9958	0.7067	0.8777	
	1.0095	1.0115	2.018	30	0.9916	0.9936	1.2412	
	1.0076	1.1321	2.256	51	0.9897	1.1121	1.3877	-
	1.0064	1.1910	2.366	53	0.9886	1.1699	1.4555	-
	1.0012	1.4323	2.853	58	0.9834	1.4069	1./553	-
	ΟςΤΟ	h=	-0.008	282	04	h=	-0.00543	-
	QSID	r=	0.999	97	QA	r=	0.99997	-
	[]			Coloulat	l			1
	Vetd-		/Petd)/Tetd/Ta		15		D)/Pa)	4
	Ostd=	Vstd/ATime	/13/0/13/0/18	<i>a j</i>	Oa=	Va/ATime	- // F d /	-
			For subsequ	ent flow ra	te calculation	is:		1
		// []	De V Tetel			//	<u> </u>	-
	Qstd=	1/m((_\ΔH(Pstd Ta))-b)	Qa=	1/m ((√∆⊦	l(Та/Ра))-b)	
	Standard	Conditions						
Istd:	298.15	°K			a the formation of the second s	RECA	LIBRATION	
PS(0):	1 /00	(ev			US EPA reco	mmends a	nnual recalibratio	on per 1998
AH: calibrate	or manomet	er reading (i	n H2O)		40 Code	of Federal F	Regulations Part	50 to 51,
\P: rootsme	ter manom	eter reading	(mm Hg)		Appendix E	to Part 50	, Reference Meth	nod for the
	acoluto tom	perature (°K)			Determinat	ion of Susn	ended Particulat	e Matter in
Ta: actual at	solute terri	perature (ity		1	Determinat	ion or ousp	chaca i articalat	c mutter in

sch Environmental, Inc. 5 South Miami Avenue

lage of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA1b	Calbration Date	:	10-Dec-19
Equipment no.	:	HVS001	Calbration Due Date	:	9-Feb-20

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		291		Kelvin Pressure, P a				1019 mmHg	
Orifice Transfer Standard Information									
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882	
Last Calibration Date		11-Jan-1	9		$(H \times P_a / 1013.3 \times 298 / T_a)^{1/2}$				
Next Calibration Date		11-Jan-2	:0		=	m _c	$x Q_{std} + b_c$		
				Calibratio	n of TSP				
Calibration	Manometer Reading			c	ຊ _{std} Continue		nuous Flow	IC	
Point	H (inches of water)		(m ³	/ min.) Reco		corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	Х-	X-axis (CF		(CFM)	Y-axis	
1	1.9	1.9	3.8	0.	9942		24	24.3552	
2	2.4	2.4	4.8	1.	1168		31	31.4587	
3	3.1	3.1	6.2	1.:	2687		36	36.5327	
4	4.4	4.4	8.8	1.	5106		48	48.7103	
5	5.0	5.0	10.0	1.	6101		54	54.7991	
By Linear Regression of	Y on X								
	Slope, m	=	47.9	646	Inte	ercept, b	= -23	3.1872	
Correlation Co	pefficient*	=	0.99	973					
Calibration	Accepted	=	Yes/	\o **					

* if Correlation Coefficient < 0.990, check and recalibration again.

Delete as appropriate.	**	Delete	as	appropriate.
------------------------	----	--------	----	--------------

Remarks :

Calibrated by

Date

: Laurance Yung

10-Dec-19

:

Checked by

Date

: James Chu

10-Dec-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA1b	Calbration Date	:	07-Feb-20
Equipment no.	:	HVS001	Calbration Due Date	:	08-Apr-20

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		292		Kelvin Pressure , P _a			1	1021 mmHg	
Orifice Transfer Standard Information									
Equipment No.		3166		Slope, m _c	2.110	24	Intercept, bc	-0.06349	
Last Calibration Date		08-Jul-1	9		(Hx	$(H \times P_a / 1013.3 \times 298 / T_a)^{1/2}$			
Next Calibration Date		07-Jul-2	0		=	m _c	$x Q_{std} + b_c$		
				Calibratio	n of TSP				
Calibration	Manometer Reading			c	std Continue		nuous Flow	IC	
Point	H (inches of water)		(m ³	³ / min.) Recor		corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	Х-	X-axis (C		(CFM)	Y-axis	
1	1.7	1.7	3.4	0.	9162		28	28.3935	
2	2.7	2.7	5.4	1.	1468		36	36.5059	
3	4.0	4.0	8.0	1.3	3893		46	46.6464	
4	5.0	5.0	10.0	1.	5497		52	52.7307	
5	6.4	6.4	12.8	1.	7493		58	58.8151	
By Linear Regression of	Y on X								
	Slope, m	=	37.3	061	Int	ercept, b	= -5	.7536	
Correlation Co	pefficient*	=	0.99	987					
Calibration	Accepted	=	Yes/	¥0**					

* if Correlation Coefficient < 0.990, check and recalibration again.

: Laurance Yung

07-Feb-20

:

** Delete as appropriate.

Remarks :

Calibrated by

Checked by

Date

James Chu

07-Feb-20

:

Date

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA2a	Calbration Date	:	10-Dec-19
Equipment no.	:	HVS002	Calbration Due Date	:	9-Feb-20

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition								
Temperature, T _a		291		Kelvin	Pressure, P	a	1	019 mmHg
Orifice Transfer Standard Information								
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882
Last Calibration Date		11-Jan-19 $(Hx P_a / 1013.3 x 298 / T_a)^{1/2}$						
Next Calibration Date		11-Jan-2	0		=	m _c	$x Q_{std} + b_c$	
				Calibratio	n of TSP			
Calibration	Manometer Reading			c	Q std Continue		nuous Flow	IC
Point	H (inches of water)		(m ³	³ / min.) Recor		corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.3	
	(up)	(down)	(difference)	Х-	K-axis (Cl		(CFM)	Y-axis
1	2.3	2.3	4.6	1.	0934		28	28.4144
2	2.7	2.7	5.4	1.	1843		34	34.5031
3	3.6	3.6	7.2	1.3	3669		40	40.5919
4	4.2	4.2	8.4	1.	4760		46	46.6807
5	4.9	4.9	9.8	1.	5939		51	51.7547
By Linear Regression of	Y on X							
	Slope, m	=	45.1	480	Inte	ercept, b	= -20).2407
Correlation Co	pefficient*	=	0.99	957				
Calibration	Accepted	=	Yes/ł	\o **				

* if Correlation Coefficient < 0.990, check and recalibration again.

Remarks :

Calibrated by

Date

: Laurance Yung

10-Dec-19

:

Checked by

Date

: James Chu

10-Dec-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA2a	Calbration Date	:	07-Feb-20
Equipment no.	:	HVS002	Calbration Due Date	:	08-Apr-20

CALIBRATION OF CONTINUOUS FLOW RECORDER

	Ambient Condition								
Temperature, T _a		292		Kelvin	Pressure, P	a	1	021 mmHg	
Orifice Transfer Standard Information									
Equipment No.		3166		Slope, m _c	2.110	24	Intercept, bc	-0.06349	
Last Calibration Date		08-Jul-1	9		(Hx	r P _a / 10	013.3 x 298 /	(T _a) ^{1/2}	
Next Calibration Date		07-Jul-2	0		=	m _c	$x Q_{std} + b_c$		
				Calibratio	n of TSP				
Calibration	Manometer Reading			c	Q std Continue		nuous Flow	IC	
Point	H (inches of water)		(m ³	(m ³ / min.) Reco		corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X-axis		(CFM)	Y-axis		
1	1.7	1.7	3.4	0.	9162		26	26.3654	
2	2.3	2.3	4.6	1.	0607		30	30.4216	
3	3.2	3.2	6.4	1.:	2458		38	38.5340	
4	4.4	4.4	8.8	1.	4556		44	44.6183	
5	5.2	5.2	10.4	1.	5798		52	52.7307	
By Linear Regression of	Y on X								
	Slope, m	=	38.6	538	Inte	ercept, b	= -9	.8452	
Correlation Co	pefficient*	=	0.99	925					
Calibration	Accepted	=	Yes/	¥0**					

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :

Calibrated by

Date

: Laurance Yung

07-Feb-20

:

Checked by

Date

James Chu

:

07-Feb-20

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	СМАЗа	Calbration Date	:	10-Dec-19
Equipment no.	:	HVS012	Calbration Due Date	:	9-Feb-20

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition											
Temperature, T _a		291		Kelvin	Pressure, P	a	1	1019 mr			
Orifice Transfer Standard Information											
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc	-0.0088	2		
Last Calibration Date		11-Jan-1	9		(Hx	r P _a / 10	013.3 x 298 /	(T _a) ^{1/2}			
Next Calibration Date		11-Jan-2	0		=	m _c	$x Q_{std} + b_c$				
Calibration of TSP											
Calibration	Mar	nometer R	eading	c) _{std}	Cont	inuous Flow	IC			
Point	H (inches of water)			(m ³	/ min.)	min.) Record		(W(P _a /1013.3x298/T _a)) ^{1/2} /35.31)		
	(up)	(down)	(difference)	Х-	X-axis		(CFM)	Y-axis			
1	1.6	1.6	3.2	0.	9127		27	27.3996			
2	2.4	2.4	4.8	1.	1168		34	34.5031			
3	3.3	3.3	6.6	1.	3089		38	38.5623			
4	3.8	3.8	7.6	1.	4042		43	43.6363			
5	4.5	4.5	9.0	1.	5277		48	48.7103			
By Linear Regression of	Y on X										
	341	Int	ercept, b	= -3	4912						
Correlation Co	pefficient*	=	0.99	913							
Calibration	Accepted	=	Yes/	\o **							

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropr	iate.
----------------------	-------

Remarks :

Date

: Laurance Yung

: 10-Dec-19

Checked by

Date

: James Chu

10-Dec-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	СМАЗа	Calbration Date	:	07-Feb-20
Equipment no.	:	HVS012	Calbration Due Date	:	08-Apr-20

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		292		Kelvin	Pressure, P	a	1	1021 mmHg		
Orifice Transfer Standard Information										
Equipment No.		3166 Slope, m _c 2.11024 Intercept, bc -0.06349								
Last Calibration Date		08-Jul-1	9		(Hx	r P _a / 10)13.3 x 298 /	'Τ _a) ^{1/2}		
Next Calibration Date		07-Jul-2	0		=	m _c	$x Q_{std} + b_c$			
Calibration of TSP										
Calibration	Mar	nometer R	eading	c	t _{std}	Conti	nuous Flow	IC		
Point	H (inches of water)			(m ³	min.) Recor		corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	Х-	X-axis		(CFM)	Y-axis		
1	1.8	1.8	3.6	0.9	9418	30		30.4216		
2	2.6	2.6	5.2	1.1	1259	38		38.5340		
3	3.8	3.8	7.6	1.3	3548		44	44.6183		
4	5.2	5.2	10.4	1.5	5798		49	49.6886		
5	6.3	6.3	12.6	1.	7358		54	54.7588		
By Linear Regression of	Y on X									
Slope, m = 29.2098					Int	ercept, b	=4.	2401		
Correlation Co	oefficient*	=	0.99	932						
Calibration	Accepted	=	Yes/	¥0**						

* if Correlation Coefficient < 0.990, check and recalibration again.

: Laurance Yung

07-Feb-20

:

** Delete as appropriate.

Remarks :

Calibrated by

Checked by

Date

James Chu

:

07-Feb-20

Date

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA4a	Calbration Date	:	10-Dec-19
Equipment no.	:	HVS004	Calbration Due Date	:	9-Feb-20

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition											
Temperature, T _a		291		Kelvin	Pressure, P	a	1	1019 mmHg			
Orifice Transfer Standard Information											
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882			
Last Calibration Date		11-Jan-1	9		(Hx	r P _a / 10	013.3 x 298 /	(T _a) ^{1/2}			
Next Calibration Date		11-Jan-2	0		=	m _c	$x Q_{std} + b_c$				
Calibration of TSP											
Calibration	Mar	nometer R	eading	c) _{std}	Cont	inuous Flow	IC			
Point	H (inches of water)			(m ³	(m ³ / min.) Recor		corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)			
	(up)	(down)	(difference)	X-axis		(CFM)		Y-axis			
1	2.1	2.1	4.2	1.	0450	25		25.3700			
2	2.6	2.6	5.2	1.	1623	31		31.4587			
3	3.2	3.2	6.4	1.:	2889	36		36.5327			
4	3.7	3.7	7.4	1.3	3856		40	40.5919			
5	4.3	4.3	8.6	1.	4934		46	46.6807			
By Linear Regression of	Y on X										
	Slope, m	=	46.1	620	Inte	ercept, b	= -22	2.7324			
Correlation Co	pefficient*	=	0.99	981							
Calibration	Accepted	=	Yes/	\ ⊕**							

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

:

Remarks :

Calibrated by

Date

: Laurance Yung

10-Dec-19

Checked by

Date

: James Chu

10-Dec-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA4a	Calbration Date	:	07-Feb-20
Equipment no.	:	HVS004	Calbration Due Date	:	08-Apr-20

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		292		Kelvin	Pressure, P	a	1	021 mmHg		
Orifice Transfer Standard Information										
Equipment No.		3166		Slope, m _c	lope, m _c 2.11024 Intercept, bc			-0.06349		
Last Calibration Date		08-Jul-1	9		(Hx	r P _a / 10	013.3 x 298 /	(T _a) ^{1/2}		
Next Calibration Date		07-Jul-2	0		=	m _c	$x Q_{std} + b_c$			
Calibration of TSP										
Calibration	Mar	nometer R	eading	c) _{std}	Conti	nuous Flow	IC		
Point	Н (H (inches of water)			(m ³ / min.) Record		corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	X-axis		(CFM)		Y-axis		
1	2.1	2.1	4.2	1.	0149	31		31.4356		
2	2.6	2.6	5.2	1.	1259	35		35.4918		
3	3.6	3.6	7.2	1.3	3195	42		42.5902		
4	4.1	4.1	8.2	1.	4061		46	46.6464		
5	4.8	4.8	9.6	1.	5190		51	51.7167		
By Linear Regression of	Y on X									
Slope, m = 39.9174 Intercept, b = -5						= -9	.4017			
Correlation Co	pefficient*	=	0.99	985						
Calibration	Accepted	=	Yes/	¥0**						

* if Correlation Coefficient < 0.990, check and recalibration again.

: Laurance Yung

07-Feb-20

:

** Delete as appropriate.

Remarks :

Calibrated by

Checked by

Date

James Chu

:

07-Feb-20

Date

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	СМА5Ь	Calbration Date	:	10-Dec-19
Equipment no.	:	HVS010	Calbration Due Date	:	9-Feb-20

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition											
Temperature, T _a		291		Kelvin	Kelvin Pressure, P a				mmHg		
Orifice Transfer Standard Information											
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc		-0.00882		
Last Calibration Date		11-Jan-1	9		(Hx	r P _a / 10	013.3 x 298 /	'Τ _a) ^{1/2}			
Next Calibration Date		11-Jan-2	:0		=	m _c	$x Q_{std} + b_c$				
Calibration of TSP											
Calibration	Mar	nometer R	eading	c) _{std}	Conti	nuous Flow		IC		
Point	H (inches of water)		(m ³	(m ³ /min.) Reco		corder, W	(W(P _a /1013	.3x298/T _a) ^{1/2} /35.31)			
	(up)	(down)	(difference)	Х-	X-axis (C		(CFM)		Y-axis		
1	1.7	1.7	3.4	0.	9407		27	2	7.3996		
2	2.3	2.3	4.6	1.	0934		35	3	5.5179		
3	3.0	3.0	6.0	1.:	2481		39	3	9.5771		
4	3.6	3.6	7.2	1.	3669		44		4.6511		
5	4.1	4.1	8.2	1.	4584		49	4	9.7251		
By Linear Regression of	Y on X										
	Slope, m	=	40.8	780	Int	ercept, b	= -10).5581			
Correlation Co	pefficient*	=	0.99	935							
Calibration	Accepted	=	Yes/	\ ⊕**							

* if Correlation Coefficient < 0.990, check and recalibration again.

Remarks :

Calibrated	bv	
Cambrateu	NУ	

Date

: Laurance Yung

:

10-Dec-19

Checked by

Date

James Chu

:

10-Dec-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	CMA5b	Calbration Date	:	07-Feb-20
Equipment no.	:	HVS010	Calbration Due Date	: _	08-Apr-20

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition									
Temperature, T _a		292		Kelvin	Pressure, P	a	1	021 mmHg	
Orifice Transfer Standard Information									
Equipment No.		3166		Slope, m _c	2.110	24	Intercept, bc	-0.06349	
Last Calibration Date		08-Jul-1	9		(Hx	r P _a / 10	013.3 x 298 /	΄Τ _a) ^{1/2}	
Next Calibration Date		07-Jul-2	0		=	m _c	$x Q_{std} + b_c$		
Calibration of TSP									
Calibration	Manometer Reading			G) _{std}	Conti	nuous Flow	IC	
Point	H (inches of water)		(m ³	(m ³ / min.) Reco		corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)		
	(up)	(down)	(difference)	Х-	axis	(CFM)		Y-axis	
1	1.9	1.9	3.8	0.9	9668	26		26.3654	
2	2.8	2.8	5.6	1.1	1672	32		32.4497	
3	3.6	3.6	7.2	1.:	3195	40		40.5621	
4	4.5	4.5	9.0	1.4	4717		47	47.6605	
5	5.3	5.3	10.6	1.9	5946		55	55.7729	
By Linear Regression of	Y on X								
	Slope, m = 46.9			J281 Intercept, b = -20.6312					
Correlation Coefficient* = 0.99		917							
Calibration Accepted = Yes/		\o **							

* if Correlation Coefficient < 0.990, check and recalibration again.

** Delete as appropriate.

Remarks :

Calibrated by

Date

: Laurance Yung

07-Feb-20

:

Checked by

Date

James Chu

:

07-Feb-20

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	MA1e	Calbration Date	:	10-Dec-19
Equipment no.	:	HVS007	Calbration Due Date	: _	9-Feb-20

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		291		Kelvin Pressure , P _a			1	019 mmHg	i	
Orifice Transfer Standard Information										
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882		
Last Calibration Date		11-Jan-1	9		(Hx	r P _a / 10	013.3 x 298 /	$(T_a)^{1/2}$		
Next Calibration Date		11-Jan-2	0		=	m _c	$x Q_{std} + b_c$			
Calibration of TSP										
Calibration	Manometer Reading			c) _{std}	Conti	nuous Flow	IC		
Point	H (inches of water)		(m ³	(m ³ / min.) Reco		corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.	.31)		
	(up)	(down)	(difference)	Х-	axis	(CFM)		Y-axis		
1	1.8	1.8	3.6	0.	9678		23	23.3404		
2	2.6	2.6	5.2	1.	1623		31	31.4587		
3	3.2	3.2	6.4	1.:	2889		39	39.5771		
4	3.8	3.8	7.6	1.	4042		46	46.6807		
5	4.4	4.4	8.8	1.	5106		51	51.7547		
By Linear Regression of	Y on X									
	Slope, m = 53.8			3569 Intercept, b = -29.6619						
Correlation Coefficient* = 0.99		966								
Calibration Accepted = Yes/		\o **								

* if Correlation Coefficient < 0.990, check and recalibration again.

:

Remarks :

Calibrated by

Date

: Laurance Yung 10-Dec-19

Checked by

Date

James Chu :

10-Dec-19

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	MA1e	Calbration Date	:	07-Feb-20
Equipment no.	:	HVS007	Calbration Due Date	:	08-Apr-20

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		292		Kelvin	Pressure, P	a	1	021 mmHg		
Orifice Transfer Standard Information										
Equipment No.		3166		Slope, m _c	2.110	24	Intercept, bc	Intercept, bc -0.06349		
Last Calibration Date		08-Jul-1	9		(Hx	: P _a / 10)13.3 x 298 /	(T _a) ^{1/2}		
Next Calibration Date		07-Jul-2	0		=	m _c	$x Q_{std} + b_c$			
Calibration of TSP										
Calibration	Manometer Reading			c	t _{std}	Conti	nuous Flow	IC		
Point	H (inches of water)		(m ³	³ / min.) Reco		order, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.3			
	(up)	(down)	(difference)	Х-	axis	-	(CFM)	Y-axis		
1	2.0	2.0	4.0	0.	9912		23	23.3232		
2	2.6	2.6	5.2	1.	1259		28	28.3935		
3	3.1	3.1	6.2	1.:	2266		33	33.4637		
4	4.5	4.5	9.0	1.	4717		39	39.5481		
5	5.2	5.2	10.4	1.	5798	45		45.6324		
By Linear Regression of	Y on X									
	Slope, m	=	36.0	361	Int	ercept, b	= -12	2.0191		
Correlation Coefficient* = 0.99		928								
Calibration Accepted = Yes/N		¥0**								

* if Correlation Coefficient < 0.990, check and recalibration again.

: Laurance Yung

:

07-Feb-20

Remarks :

Calibrated by

Date

Checked by

Date

: James Chu

07-Feb-20

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	MA1w	Calbration Date	:	10-Dec-19
Equipment no.	:	HVS008	Calbration Due Date	:	9-Feb-20

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition										
Temperature, T _a		291		Kelvin	Pressure, P	Pa		1019 mmF	−lg	
Orifice Transfer Standard Information										
Equipment No.		0005		Slope, m _c	1.998	61	Intercept, bc	-0.00882		
Last Calibration Date		11-Jan-1	9		(Hx	(P _a / 10)13.3 x 298 /	(T _a) ^{1/2}		
Next Calibration Date		11-Jan-2	0		=	m _c	$x Q_{std} + b_c$			
Calibration of TSP										
Calibration	Manometer Reading			c	Q _{std}	Conti	nuous Flow	IC		
Point	H (inches of water)		(m ³	(m ³ / min.) Reco		order, W	(W(P _a /1013.3x298/T _a) ^{1/2} /3	35.31)		
	(up)	(down)	(difference)	Х-	axis	1	(CFM)	Y-axis		
1	1.5	1.5	3.0	0.	8839		25	25.3700		
2	2.1	2.1	4.2	1.	0450		34	34.5031		
3	2.8	2.8	5.6	1.:	2060		42	42.6215		
4	3.6	3.6	7.2	1.	3669		49	49.7251		
5	4.3	4.3	8.6	1.	4934		54	54.7991		
By Linear Regression of	Y on X									
	Slope, m	=	48.1	833 Intercept, b = -16.3691						
Correlation Coefficient* = 0.99		978								
Calibration Accepted = Yes/A		\o **								

* if Correlation Coefficient < 0.990, check and recalibration again.

Calibrated by

Remarks : : Laurance Yung

10-Dec-19

:

Checked by

Date

James Chu :

10-Dec-19

Date

Calibration Data for High Volume Sampler (TSP Sampler)

Location	:	MA1w	Calbration Date	:	07-Feb-20
Equipment no.	:	HVS008	Calbration Due Date	:	08-Apr-20

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition								
Temperature, T _a		292		Kelvin	Pressure, P	a	1	021 mmHg
	Orifice Transfer Standard Information							
Equipment No.		3166		Slope, m _c	2.110	24	Intercept, bc	-0.06349
Last Calibration Date		08-Jul-1	9		(Hx	r P _a / 10)13.3 x 298 /	(T _a) ^{1/2}
Next Calibration Date		07-Jul-2	0		=	m _c	$x Q_{std} + b_c$	
Calibration of TSP								
Calibration	Mar	nometer R	eading	c	Q _{std}	Conti	nuous Flow	IC
Point	H (inches of water)		(m ³	/ min.)	Red	corder, W	(W(P _a /1013.3x298/T _a) ^{1/2} /35.31)	
	(up)	(down)	(difference)	Х-	-axis		(CFM)	Y-axis
1	2.5	2.5	5.0	1.	1046		28	28.3935
2	3.2	3.2	6.4	1.:	2458		36	36.5059
3	4.1	4.1	8.2	1.	4061		40	40.5621
4	4.9	4.9	9.8	1.	5344		46	46.6464
5	5.7	5.7	11.4	1.	6526		53	53.7448
By Linear Regression of	Y on X							
	Slope, m	=	43.6	905	Int	ercept, b	= -19	9.5025
Correlation Co	pefficient*	=	0.99	914				
Calibration	Accepted	=	Yes/ł	\o **				

* if Correlation Coefficient < 0.990, check and recalibration again.

: Laurance Yung

07-Feb-20

:

** Delete as appropriate.

Remarks :

Calibrated by

Date

Checked by

Date

: James Chu

07-Feb-20

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黃竹坑道 37號利達中心 12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0222 02		Page	1	of	2	
Item tested							
Description: Manufacturer: Type/Model No.: Serial/Equipment No.: Adaptors used:	Sound Level Mete B & K 2250 2701778 -	r (Type 1)	Microphone B & K 4950 2755097		Preamp B & K ZC0032 19223 -		
Item submitted by							
Customer Name: Address of Customer: Request No.: Date of receipt:	Lam Geotechnics - - 22-Feb-2019	Limited.					
Date of test:	25-Feb-2019						
Reference equipment	used in the calib	ration					
Description: Multi function sound calibrator Signal generator Signal generator	Model: B&K 4226 DS 360 DS 360	Serial No. 2288444 33873 61227	Expiry Date: 23-Aug-2019 24-Apr-2019 26-Dec-2019		Traceat CIGISME CEPREI CEPREI	ole to: EC	
Ambient conditions							
Temperature: Relative humidity: Air pressure:	21 ± 1 °C 55 ± 10 % 1005 ± 5 hPa						
Test specifications							

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of <u>+</u>20%.
- 3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

ena Junai

Actual Measurement data are documented on worksheets.

Approved Signatory:

26-Feb-2019 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黃竹坑道 3 7 號利達中心 1 2 樓

會被買竹坑姐37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

19CA0222 02

Page

2 of

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

			Expanded	Coverage
Test:	Subtest:	Status:	Uncertanity (dB)	Factor
Self-generated noise	А	Pass	0.3	
Sell generated helde	C	Pass	0.8	
	Lin	Pass	16	
Linearity range for Leg	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
, , , , , , , , , , , , , , , , , , , ,	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Tooti	Subtect	Status	Expanded	Coverage
Test.	Sublest	Status	Oncertainty (dB)	Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
* [*]	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

		- End -	
Calibrated by:	EL	Checked by:	$1 \sim \gamma$
	Fong Chun Wai		Fung Chi Yip
Date:	25-Feb-2019	Date:	/26-Feb-2019

The standard(s) and equipment used in the calibration are traceable to national of international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黃竹坑道 37號利達中心 12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	20CA0123 01		Page	1 of	2
Item tested					
Description: Manufacturer: Type/Model No.: Serial/Equipment No.: Adaptors used:	Sound Level Meter B & K 2250L 3002695 -	(Туре 1)	Microphone B & K 4950 2940839 -	Preamp B & K ZC0032 18582 -	
Item submitted by					
Customer Name: Address of Customer: Request No.: Date of receipt:	Lam Geotechnics I - - 23-Jan-2020	.imited.			
Date of test:	24-Jan-2020				
Reference equipment u	used in the calibr	ation			
Description: Multi function sound calibrator Signal generator	Model: B&K 4226 DS 360	Serial No. 2288444 33873	Expiry Date: 23-Aug-2020 10-Apr-2020	Traceal CIGISME CEPREI	ble to: EC
Ambient conditions					
Temperature: Relative humidity: Air pressure:	21 ± 1 °C 55 ± 10 % 1005 ± 5 hPa				
Test specifications					

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

eng

29-Jan-2020 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

20CA0123 01

Page 2

of 2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

			Expanded	Coverage
Test:	Subtest:	Status:	Uncertanity (dB)	Factor
Self-generated noise	А	Pass	0.3	
3	С	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leg	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

			Expanded	Coverage
Test:	Subtest	Status	Uncertanity (dB)	Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

End Calibrated by: Checked by: Fung Chi Yip Shek Kwong Tat 24-Jan-2020 Date: 29-Jan-2020 Date:

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

余字合試験有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong.

Tel: (852) 2873 6860 Fax: (852) 2555 7533

SMECLab

Preamp	type:	ZC0032	Serial No.	18582	Report	t: 20CA0123 01	=
Microphone	type:	4950	Serial No.	2940839			
Sound level m	eter type:	2250L	Serial No.	3002695	Date	24-Jan-2020	
Test Data for Sound Level Meter P							5

SELF GENERATED NOISE TEST

E-mail: smec@cigismec.com

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Website: www.cigismec.com

Noise level in A weighting	13.5	dB
Noise level in C weighting	14.0	dB
Noise level in Lin	18.8	dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actual level		Tolerance	Devia	Deviation		
Reference/Expected level	non-integrated	integrated		non-integrated	integrated		
dB	dB	dB	+/- dB	dB	dB		
94.0	94.0	94.0	0.7	0.0	0.0		
99.0	99.0	99.0	0.7	0.0	0.0		
104.0	104.0	104.0	0.7	0.0	0.0		
109.0	109.0	109.0	0.7	0.0	0.0		
114.0	114.0	114.0	0.7	0.0	0.0		
119.0	119.1	119.1	0.7	0.1	0.1		
124.0	124.1	124.1	0.7	0.1	0.1		
129.0	129.1	129.1	0.7	0.1	0.1		
134.0	134.1	134.1	0.7	0.1	0.1		
135.0	135.1	135.1	0.7	0.1	0.1		
136.0	136.1	136.1	0.7	0.1	0.1		
137.0	137.1	137.1	0.7	0.1	0.1		
138.0	138.1	138.1	0.7	0.1	0.1		
139.0	139.0	139.0	0.7	0.0	0.0		
140.0	140.0	140.0	0.7	0.0	0.0		
89.0	89.0	89.0	0.7	0.0	0.0		
84.0	84.0	84.0	0.7	0.0	0.0		
79.0	79.0	79.0	0.7	0.0	0.0		
74.0	74.0	74.0	0.7	0.0	0.0		
69.0	69.0	69.0	0.7	0.0	0.0		
64.0	64.0	64.0	0.7	0.0	0.0		
59.0	59.0	59.0	0.7	0.0	0.0		
54.0	54.0	54.0	0.7	0.0	0.0		
49.0	49.0	49.0	0.7	0.0	0.0		
44.0	44.0	44.0	0.7	0.0	0.0		
39.0	39.0	39.0	0.7	0.0	0.0		

(c)Soils Materials Eng. Co., Ltd.

Form No CAWS 152/Issue 1/Rev. B/01/02/2007

徐 合 試 驗 有 限 公 司 SOILS & MATERIALS ENGINEERING CO., LTD. 香 港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓

脊液度 11 近 道 3 7 號 州 建 中 心 1 2 读 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

SMECLab

Page 2 of 5

Test Data for Sound Level Meter

Sound level met	er type:	2250L		Serial No.	3002695	Dat	e 24-Jan-2	2020
Microphone Preamp	type: type:	4950 ZC0032		Serial No. Serial No.	2940839 18582	Rep	oort: 20CA012	23 01
34.0		34.0	34.0	0.7		0.0	0.0	
33.0		33.0	33.0	0.7		0.0	0.0	
32.0		32.0	32.0	0.7		0.0	0.0	
31.0		31.0	31.0	0.7		0.0	0.0	
30.0		30.0	30.0	0.7		0.0	0.0	

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20.140	30.0	30.0	0.7	0.0
20-140	138.0	138.1	0.7	0.1

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL. Frequency weighting A:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolerar	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	0.0	54.5	1.5	1.5	-0.1
63.1	94.0	67.8	0.0	67.8	1.5	1.5	0.0
125.9	94.0	77.9	0.0	77.9	1.0	1.0	0.0
251.2	94.0	85.4	0.0	85.4	1.0	1.0	0.0
501.2	94.0	90.8	0.0	90.8	1.0	1.0	0.0
1995.0	94.0	95.2	0.0	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	-0.1	94.9	1.0	1.0	0.0
7943.0	94.0	92.9	-0.3	92.6	1.5	3.0	0.0
12590.0	94.0	89.7	-0.3	89.4	3.0	6.0	0.0

Frequency weighting C:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolerar	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	0.0	91.1	1.5	1.5	0.1
63.1	94.0	93.2	0.0	93.2	1.5	1.5	0.0
125.9	94.0	93.8	0.0	93.8	1.0	1.0	0.0

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

The copyright of this report is owned by the Soils & Materials Engineering Co., Ltd. It may not be reproduced except with prior written approval of the issuing laboratory.

試驗有限公司 ATERIALS ENGINEERING CO., LTD. SOILS & M 香

港 黃 竹 坑 道 3 7 號 利 達 中 心 1 2 樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

SMECLab

Page 3 of 5

Test Data for Sound Level Meter

Sound level me	eter type:	2250L		Serial No.	300	2695	Date	24-Jan-2020
Microphone Preamp	type: type:	4950 ZC0032		Serial No. Serial No.	294 185	0839 82	Report:	20CA0123 01
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	
1995.0	94.0	93.8	0.0	93.8	1.0	1.0	0.0	
3981.0	94.0	93.2	-0.1	93.1	1.0	1.0	0.0	
7943.0	94.0	91.0	-0.3	90.7	1.5	3.0	0.0	
12590.0	94.0	87.8	-0.3	87.4	3.0	6.0	-0.1	

Frequency weighting Lin:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolera	nce(dB)	Deviation *
' Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	0.0	94.1	1.5	1.5	0.1
63.1	94.0	94.0	0.0	94.0	1.5	1.5	0.0
125.9	94.0	94.0	0.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	0.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	-0.1	93.9	1.0	1.0	0.0
7943.0	94.0	94.0	-0.3	93.7	1.5	3.0	0.0
12590.0	94.0	94.0	-0.3	93.7	3.0	6.0	0.0

*Deviation = Actual level - (Expected level + Correction of electrical response) The correction of electrical response is specified in the Table A.2 of technical documentation of BE

1712-21. The maximum expanded uncertainty of correction of electrical response is 0.29 dB.

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A Maximum hold)

infortatio orginal to contantaoual	(
Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
116.0	115.0	114.9	1.0	1.0	-0.1

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A. Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
116.0	111.9	111.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the

(c)Soils Materials Eng. Co., Ltd.

徐介 合 試 馬 介 限 公 司 SOILS & MATERIALS ENGINEERING CO., LTD. 香 港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong.

Tel: (852) 2873 6860 Fax: (852) 2555 7533

SMECLab

Page 4 of 5

Test Data for	Sound	Level	Meter
---------------	-------	-------	-------

E-mail: smec@cigismec.com

Sound level met	er type:	2250L	Seriał No.	3002695	Date	24-Jan-2020
Microphone Preamp	type: type:	4950 ZC0032	Serial No. Serial No.	2940839 18582	Report:	20CA0123 01

10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range. Positive polarities: (Weighting Z, set the generator signal to single, Lzpeak)

r oblarte polaritioo.	(Troighting 2, oot the generator eight to enight,press)						
Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation			
dB	dB	dB	+/- dB	dB			
119.0	119.0	119.3	2.0	0.3			
Negative polarities:							
Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation			
dB	dB	dB	+/- dB	dB			
119.0	119.0	119.3	2.0	0.3			

Website: www.cigismec.com

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3. Test frequency: 2000 Hz 2 dB below the upper limit of the primary indicator range. Amplitude: Burst repetition frequency: 40 Hz 11 cycles of a sine wave of frequency 2000 Hz. Tone burst signal: (Set to INT) Ref. Level Expected level Tone burst signal Tolerance Deviation dB indication(dB) +/- dB dB Time wighting dB Slow 117.9 0.5 -0.1 118.0+6.6 118.0

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on	the reference range	(Set the SLM to LAImax)
Test frequency:	2000 Hz	
Amplitude:	The upper limit of the	e primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Level	Single burs	Single burst indication		Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	111.2	111.1	2.0	-0.1

Repeated at 100 Hz

Ref. Level	Repeated bu	Repeated burst indication		Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	117.3	117.1	1.0	-0.2

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst:	4000 Hz
--------------------------	---------

Duration of tone burst:	l ms					
Repetition Time	Level of	Expected	Actual	Tolerance	Deviation	Remarks
	tone burst	Leq	Leq			
msec	dB	dB	dB	+/- dB	dB	
1000	110.0	110.0	109.9	1.0	-0.1	60s integ.
10000	100.0	100.0	99.9	1.0	-0.1	6min. integ.

余字合試気(な)有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

SMECLab

Page 5 of 5

Test Data for Sound Level Meter

Sound level met	er type:	2250L	Serial No.	3002695	Date 24-Jan-2020
Microphone	type:	4950	Serial No.	2940839	Report: 20CA0123 01
Preamp	type:	ZC0032	Serial No.	18582	

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range Test frequency: 4000 Hz

Integration time:	10 sec

The integrating sound level meter set to Leg:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10	88.0	58.0	57.9	1.7	-0.1

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	88.0	68.0	67.9	1.7	-0.1

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequency:2000 HzAmplitude:2 dB below the upper limit of the primary indicator rangeBurst repetition frequency:40 HzTone burst signal:11 cycles of a sine wave of frequency 2000 Hz.			ange.		
Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation
at overload (dB)	1 dB	3 dB	dB	dB	dB
136.8	135.8	132.8	3.0	1.0	0.0

For integrating SLM, with the instrument indicating Leq.

For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as following: The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range Test frequency: 4000 Hz

Integration time: Single burst duration:		10 sec 1 msec				
Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation	
at overload (dB)	1 dB	dB	dB	dB	dB	
143.6	142.6	102.6	102.6	2.2	0.0	

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency	Expected level	Actual level	Tolerar	nce (dB)	Deviation
Hz	dB	Measured (dB)	+	-	dB
1000	94.0	94.0	0.0	0.0	0.0
125	77.9	78.1	1.0	1.0	0.2
8000	92.9	93.2	1.5	3.0	0.3

-----END------

(c)Soils Materials Eng. Co., Ltd.

余字合試気錠有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/E Leader Centre 37 Wong Chuk Hang Road Aberdeen Hong b

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0905 02		Page	1 of 2
Item tested				
Description:	Sound Level Mete	r (Type 1)	Microphone	Preamp
Manufacturer:	B & K		B&K	B&K
Type/Model No.:	2250-L		4950	ZC0032
Serial/Equipment No .:	3006790		2827240	21213
Adaptors used:	-		-	-
Item submitted by				
Customer Name:	Lam Geotechnics	Limited		
Address of Customer:	-			
Request No.:	-			
Date of receipt:	05-Sep-2019			
Date of test:	06-Sep-2019			
Reference equipment	used in the calib	ration		
Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2020	CIGISMEC
Signal generator	DS 360	61227	26-Dec-2019	CEPREI
Ambient conditions				
Temperature:	21 ± 1 °C			
Relative humidity:	55 ± 10 %			
Air pressure:	1000 ± 5 hPa			

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Feng Junai

06-Sep-2019 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道 3 7號利達中心 1 2 樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

19CA0905 02

Page

of

2

2

1, Electrical Tests

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

			Expanded	Coverage
Test:	Subtest:	Status:	Uncertanity (dB)	Factor
Self-generated noise	A	Pass	0.3	
5	С	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No CARP152-2/Issue 1/Rev.C/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0329 02		Page	1 of 2	2	
Item tested						
Description:	Sound Level Mete	er (Type 1)	Microphone	Preamp		
Manufacturer:	B & K		B&K	B&K		
Type/Model No.:	2250-L		4950	ZC0032		
Serial/Equipment No.:	2722310		2698702	13318		
Adaptors used:	-		-	-		
Item submitted by				-		
Customer Name:	Lam Geotechnics	Ltd.				
Address of Customer:						
Request No.:	_					
Date of receipt:	29-Mar-2019					
Date of test:	02-Apr-2019					
Reference equipment	used in the calib	oration				
Description:	Model:	Serial No.	Expiry Date:	Traceable to	:	
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2019	CIGISMEC		
Signal generator	DS 360	33873	24-Apr-2019	CEPREI		
Signal generator	DS 360	61227	26-Dec-2019	CEPREI		
Ambient conditions						
Temperature:	21 ± 1 °C					
Relative humidity:	55 ± 10 %					
Air pressure:	1005 ± 5 hPa					
Test specifications				T 4 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory: Jung Fend

02-Apr-2019 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

Page

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

19CA0329 02

2 of

2

1, Electrical Tests

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

		Expanded	Coverage
Subtest:	Status:	Uncertanity (dB)	Factor
А	Pass	0.3	
С	Pass	0.8	
Lin	Pass	1.6	
At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Reference SPL on all other ranges	Pass	0.3	
2 dB below upper limit of each range	Pass	0.3	
2 dB above lower limit of each range	Pass	0.3	
At reference range , Step 5 dB at 4 kHz	Pass	0.3	
A	Pass	0.3	
С	Pass	0.3	
Lin	Pass	0.3	
Single Burst Fast	Pass	0.3	
Single Burst Slow	Pass	0.3	
Single 100µs rectangular pulse	Pass	0.3	
Crest factor of 3	Pass	0.3	
Single burst 5 ms at 2000 Hz	Pass	0.3	
Repeated at frequency of 100 Hz	Pass	0.3	
1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Single burst 10 ms at 4 kHz	Pass	0.4	
Single burst 10 ms at 4 kHz	Pass	0.4	
SPL	Pass	0.3	
Leq	Pass	0.4	
	A C Lin At reference range , Step 5 dB at 4 kHz Reference SPL on all other ranges 2 dB below upper limit of each range 2 dB above lower limit of each range At reference range , Step 5 dB at 4 kHz A C Lin Single Burst Fast Single Burst Slow Single 100µs rectangular pulse Crest factor of 3 Single burst 5 ms at 2000 Hz Repeated at frequency of 100 Hz 1 ms burst duty factor 1/10 ³ at 4kHz 1 ms burst duty factor 1/10 ⁴ at 4kHz Single burst 10 ms at 4 kHz SPL Leq	Subtest:Status:APassCPassLinPassAt reference range , Step 5 dB at 4 kHzPassReference SPL on all other rangesPass2 dB below upper limit of each rangePass2 dB above lower limit of each rangePassAt reference range , Step 5 dB at 4 kHzPassA reference range , Step 5 dB at 4 kHzPassAPassCPassLinPassSingle Burst FastPassSingle Burst FastPassSingle Burst SlowPassSingle burst 5 ms at 2000 HzPassRepeated at frequency of 100 HzPass1 ms burst duty factor 1/10 ³ at 4kHzPass1 ms burst duty factor 1/10 ⁴ at 4kHzPassSingle burst 10 ms at 4 kHzPassSingle burst 10 ms at 4 kHzPassSPLPassLeqPass	Subtest:Status:Uncertanity (dB)APass0.3CPass0.8LinPass1.6At reference range, Step 5 dB at 4 kHzPass0.3Reference SPL on all other rangesPass0.32 dB below upper limit of each rangePass0.32 dB above lower limit of each rangePass0.3At reference range, Step 5 dB at 4 kHzPass0.3At reference range, Step 5 dB at 4 kHzPass0.3CPass0.3CPass0.3CPass0.3LinPass0.3CPass0.3Single Burst FastPass0.3Single Burst FastPass0.3Single Burst SlowPass0.3Single burst 5 ms at 2000 HzPass0.3Pass0.33Repeated at frequency of 100 HzPass0.31 ms burst duty factor 1/10 ³ at 4kHzPass0.31 ms burst duty factor 1/10 ⁴ at 4kHzPass0.31 ms burst duty factor 1/10 ⁴ at 4kHzPass0.3Single burst 10 ms at 4 kHzPass0.4SPLPass0.3LeqPass0.4

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

- 0	- End -	1	
EL	Checked by:	1~	
Fong Chun Wai		Fung Chi Yip	
02-Apr-2019	Date:	02-Apr-2019	
	Fong Chun Wai 02-Apr-2019	- End - El. Checked by: Fong Chun Wai 02-Apr-2019 Date:	- End - El. Fong Chun Wai 02-Apr-2019 Date: Checked by: Fung Chi Yip 02-Apr-2019

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0425 02		Page	1 of 2
Item tested				
Description:	Sound Level Mete	r (Type 1)	Microphone	Preamp
Manufacturer:	B&K	. (.))	B&K	B&K
Type/Model No	2250-1		4950	ZC0032
Serial/Equipment No	2722311		2698703	13321
Adaptors used:	-		-	-
Item submitted by				
Customer Name:	Lam Geotechnics	Ltd.		
Address of Customer:	-			
Request No.:	-			
Date of receipt:	25-Apr-2019			
Date of test:	02-May-2019			
Reference equipment	used in the calib	ration		
Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Multi function sound calibrator	B&K 4226	2288444	23-Aug-2019	CIGISMEC
Signal generator	DS 360	61227	26-Dec-2019	CEPREI
Ambient conditions				
Tomporaturo	22 ± 1 °C			
Polativo humidity:	22 I I U			
Air processor	1005 L 5 bDo			
Air pressure.	1005 ± 5 hPa			
Test specifications				
1, The Sound Level Me	ter has been calibrate	ed in accordance with	the requirements as spec	cified in BS 7580: Part 1: 19

- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory: Feng Junqi

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

Page

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

19CA0425 02

2 of

2

1, Electrical Tests

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

			Expanded	Coverage
Test:	Subtest:	Status:	Uncertanity (dB)	Factor
Self generated noise	٨	Dass	0.3	
Sell-generated holse		Pass	0.3	
		Fass	0.8	
		Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	1	- End -	
Calibrated by:	1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Checked by:	Hum
Date:	Fung Chi Yip ¢2-May-2019	Date:	Shek Kwong Tat 03-May-2019

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

徐 合 試 驗 有 限 公 司 SOILS & MATERIALS ENGINEERING CO., LTD. 香 港 黃 竹 坑 道 3 7 號 利 達 中 心 1 2 樓

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0314 01			Page	1	of	2	
Item tested								
Description:	Sound Level Meter (T	ype 1)	,	Microphone				
Manufacturer:	Larson Davis			PCB				
Type/Model No.:	LxT1		,	377B02				
Serial/Equipment No.:	0003737			171529				
Adaptors used:	-		,	-				
Item submitted by								
Customer Name:	Lam Geotechnics Ltd							
Address of Customer:	-							
Request No.:	-							
Date of receipt:	14-Mar-2019							
Date of test:	18-Mar-2019							
Reference equipment	used in the calibrat	ion						
Description:	Model:	Serial No.		Expiry Date:		Traceat	ole to:	
Multi function sound calibrator	B&K 4226	2288444		23-Aug-2019		CIGISME	C	
Signal generator	DS 360	61227		26-Dec-2019		CEPREI		
Ambient conditions								
Temperature:	21 ± 1 °C							
Relative humidity:	55 ± 10 %							
Air pressure:	1005 ± 5 hPa							
Test specifications								

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Feng/Junqi

19-Mar-2019 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香 港 黃 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

Page

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

1.

19CA0314 01

2 of

Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

			Expanded	Coverage
Test:	Subtest:	Status:	Uncertanity (dB)	Factor
Self-generated noise	А	Pass	0.3	
	С	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	N/A	N/A	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Weighting A at 125 Hz	Pass	0.3	
Weighting A at 8000 Hz	Pass	0.5	
	Subtest Weighting A at 125 Hz Weighting A at 8000 Hz	SubtestStatusWeighting A at 125 HzPassWeighting A at 8000 HzPass	Subtest Status Expanded Weighting A at 125 Hz Pass 0.3 Weighting A at 8000 Hz Pass 0.5

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

	- End -	1 1
El	Checked by:	1~~~
Fong Chun Wai		Fung Chi Yig
18-Mar-2019	Date:	19-Mar-2019
	Fong Chun Wai 18-Mar-2019	- End - El

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

綜 合 試 驗 有 限 公 司 SOILS & MATERIALS ENGINEERING CO., LTD. 港 黃 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 香 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0617 03-02	2	Page:	1 of	2
Item tested					
Description:	Acoustical Calibr	ator (Class 1)			
Manufacturer:	Honalim Co., Ltd				
Type/Model No.:	HLES-02				
Serial/Equipment No.:	2016611465				
Adaptors used:	-				
Item submitted by					
Curstomer:	Lam Environmen	tal Services Limired.			
Address of Customer:	-				
Request No.:	-				
Date of receipt:	17-Jun-2019				
Date of test:	19-Jun-2019				
Reference equipment	used in the cali	bration			
Description:	Model:	Serial No.	Expiry Date:	Traceable	to:
Lab standard microphone	B&K 4180	2341427	03-May-2020	SCL	
Preamplifier	B&K 2673	2239857	17-May-2020	CEPREI	
Measuring amplifier	B&K 2610	2346941	05-Jun-2020	CEPREI	
Signal generator	DS 360	61227	10-May-2020	CEPREI	
Digital multi-meter	34401A	US36087050	08-May-2020	CEPREI	
Audio analyzer	8903B	GB41300350	13-May-2020	CEPREI	
Universal counter	53132A	MY40003662	10-May-2020	CEPREI	

Ambient conditions

Temperature:	22 ± 1 °C		
Relative humidity:	55 ± 10 %		
Air pressure:	1005 ± 5 hPa		

Test specifications

1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.

2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.

The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference 3. pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

19-Jun-2019 **Company Chop:**

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Approved Signatory:

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

徐 合 試 験 有 限 公 司
SOILS & MATERIALS ENGINEERING CO., LTD.
香 港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

19CA0617 03-02

Page: 2 of

of 2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	93.85	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz	STF = 0.012 dB	
Estimated expanded uncertainty	0.005 dB	

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz	Actual Frequency = 1003.6 Hz	
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz	TND = 0.3 %
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.